New paper: Paleolimnological assessment of wildfire‐derived atmospheric deposition of trace metal(loid)s and major ions to subarctic lakes (Northwest Territories, Canada)

I am very pleased to share this article by Nicolas Pelletier about fires and trace metal(loid)s in the Northwest Territories:

Pelletier N., Chételat J., Blarquez O., & Vermaire J. C. (2020). Paleolimnological assessment of wildfire‐derived atmospheric deposition of trace metal(loid)s and major ions to subarctic lakes (Northwest Territories, Canada). Journal of Geophysical Research: Biogeosciences, 125, e2020JG005720. https://doi.org/10.1029/2020JG005720

You can find the paper here https://doi.org/10.1029/2020JG005720 and here 

Plain language summary:

The subarctic boreal forest is facing major changes in fire regimes in response to climate change, and it is predicted that wildfires will become increasingly frequent and
severe in the near future. Wildfires release terrestrial elements to the atmosphere as aerosols, and the impact of ash fallout from local fires on metal(loid) deposition is not well characterized. Wildfire fallouts contain certain elements that can be essential to living organisms (e.g., Ca, Mg, Mn, and Fe) and others that can be toxic (e.g., Pb, Hg, Cd, and As). In this research, we used lake sediment to estimate the amount of material deposited by wildfires in lakes of the subarctic boreal forest over the last 150 years. We found that the input of major ions (e.g., Na, Mg, Ca, and K), metals (e.g., Pb, Hg, Al, and Fe), and metalloids (As and Sb) was elevated during wildfire periods but only by a small amount. The impact of atmospheric deposition was observable in sediment records, indicating that element accumulation in lake sediment can be influenced by wildfires occurring outside the catchment. This study suggests that large areas, including many lakes, will receive additional metal, metalloid, and major ion inputs from more frequent wildfire fallout.